

1 Einführung 1.1 Was ist PSPICE • Portierung von SPICE auf PC (MICROSIM Corp.) • Simulation Program with Integrated Circuit Emphasis Simulationsprogramm für elektronische Schaltungen Wegen Analogien anwendbar auf thermische, akustische, .. Probleme Wozu SPICE? • Effizientes Werkzeug um Zeit/Kosten von Elektronikentwicklung zu minimieren Zahl der erforderlichen Laborschaltungen lässt sich reduzieren • Modifikationen und Testergebnisse lassen sich in kürzester Zeit erreichen

Dr.-Ing. M. Junker

1

- 1.2 Ziel der Vorlesung
 - Elektrotechnik veranschaulichen!
 - Verstehen und Begreifen von Elektrotechnik stehen im Fokus
 - PSPICE dient nur als Werkzeug dieses Ziel zu erreichen
 - Lediglich eine Einführung in PSPICE (1.Teil der Vorlesung)
 - Struktur/Aufbau des Programms kennen lernen um es bedienen zu können
 - ohne PSPICE Profi werden zu müssen
 - Beispiele: (2.Teil der Vorlesung)
 - verhalten von Bauelementen (C, L, D)
 - Wirkungsweise besonderer Schaltungsmaßnahmen (C)
 - wichtige Grundschaltungen

1.3 Literatur

1

- Robert Heinemann: PSPICE Einführung in die Elektronik-Simulation, 3. Auflage, Hanser-Verlag, € 29,90.
 In 3 Teilen wird in die Grundlagen, die Hohe Schule der Simulation und Einblicke, Anwendungen und Aussichten berichtet. Dem Buch liegt eine CD bei, die das Online-Handbuch enthält; außerdem befinden sich auf ihr die PSpice-Studentenversion 9.1 und ORCAD-Lite-Edition 9.2.
- Kostenloses Tutorial für Studentversion 9.1 im Internet www-ibt.etec.uni
 - karlsruhe.de/linette/pspice/pspice_index.html

1.4 Die Studentenversion

hinsichtlich Umfang der möglichen Schaltungen und Anzahl der verwendbaren Bibliotheken mit etlichen Restriktionen versehene Version von PSPICE

im Rahmen der Vorlesung wirken diese Restriktionen jedoch kaum einschränkend

1.7 Aufgabe der verwendeten Module

Schematics

1

Beschreibung der:

- Testschaltung
- Umgebungsbedingungen (Versorgung, Anregung, ..)

Bestimmung der Analysemethode (z.B. DC sweep, ..)

PSpice A/D

Die eigentliche Simulation/Berechnung

Probe

Visualisierung der Simulationsergebnisse

Dr.-Ing. M. Junker

1

1.9 Voraussetzungen / Limitierungen

- Ein Knoten muss der Bezugsknoten 0 sein (z.B. GND)
 - Jeder Pin muss beschaltet werden
 - Notfalls mit einem extrem hochohmigen Widerstand
- Zu jedem Knoten muss ein Gleichstrompfad bestehen
 - D.h. z.B. zwei Kondensatoren in Reihe sind nicht möglich
 - Notfalls einen extrem hochohmigen Widerstand einfügen
 - Statt Kommas sind Dezimalpunkte zu verwenden
- Keine Unterscheidung zwischen Groß- und Kleinschreibung

-

1.10 Verwendete Einheiten

Größenordnung	Exponent	In Pspice verwendete Abkürzung
Tera	E12	
Giga	E9	G
Mega	E6	MEG
Kilo	E3	K
Milli	E-3	М
Mikro	E-6	U
Nano	E-9	N
Piko	E-12	Р
Femto	E-15	F

Die daraus generierten Eingangsdaten einer für die Simulation (*.cir und *.net Datei)

	BSP	001	b.cir
--	-----	-----	-------

1

- * D:\PSPICE_Studi\Beispiele\BSP001b.sch
- * Schematics Version 9.1 Web Update 1
- * Mon Feb 02 12:53:10 2004
- ** Analysis setup ** .ac DEC 101 1k 1000.00K .tran Ons 1ms 0 1u .OP
- * From [PSPICE NETLIST] section of pspiceev.ini: .lib "nom.lib"
- .INC "BSP001b.net" .INC "BSP001b.als"
- .probe

.END

D	rIr	ng. I	M.	Jur	nker
~		.9.		501	Πίψι

1.12 Die Visualisierung der Ergebnisse in Probe

Spannungen

1

- Die Spannung an einem beliebigen Knoten gegenüber dem Knoten 0 V(3) ; V(\$N_0005)
- Die Spannung an einem beliebigen Bauteilanschluss gegenüber dem Knoten 0. V(C1:1) ; V(C1:2)
- Die Spannung zwischen zwei Knoten

V(3:\$N_0002) ; V(7:3) ; V(3:0)

• Die Spannung zwischen zwei Bauteilanschlüssen von Bauteilen

Ströme

- Der Strom durch ein Bauteil (nur Zweipol möglich!!!)
 - Der Strom der in den ersten und aus dem zweiten Bauteilanschluss fließt Gegebenenfalls VSRC mit 0V oder Widerstand mit 1u einfügen

	Eunktionon	
	FUIKIONEN	
Funktior	Beschreibung	
ABS(x)	Betrag	
SQRT(x)	Quadratwurzel	
EXP(x)	Exponent	
P(x,y)	Phase zwischen x und y in Grad	
R(x)	Realteil einer komplexen Größe	_
IMG(x)	Imaginärteil einer komplexen Größe	
PWR(x,)) Betrag von x hoch y	
D(x)	Ableitung von x nach der Abszissenvariable	
S(x)	Integral von x über den Bereich der Abszissenvariablen	
RMS(x)	Effektivwert (Root-Mean-Square) von x	
DB(x)	Betrag von x in dB (dezibel)	
MIN(x)	Minimalwert von x	
MAX(x)	Maximalwert von x	

Analysearten

2

• Die im Rahmen der Vorlesung relevanten Analysearten

Analysearten

- 2.1 Gleichstrom-Arbeitspunkt-Analyse (DC-Sweep)
 - Statische Betrachtungsweise
 - Einfluss beliebiger Parameter auf die Schaltung lassen sich untersuchen

z.B. Ua=f(Ue), Ua=f(R₃), Ia=f(
$$\vartheta$$
)

	DC Sweep	×	
	Swept Var. Type	Name: V1	
	C Current Source C Model Parameter C Global Parameter	Model Type: Model Name: Param. Name: Model Nam	
	Sweep Type © Linear © Octave © Decade © Value List	Start Value: 1 End Value: 5 Increment: 10m Values:	
RA	Nested Sweep	OK Cancel	
	DrI	ng. M. Junker	17

Analysearten

2

2.2 Analyse im Zeitbereich (Transient Analyse)

 Zeitlicher Verlauf von beliebigen elektrischen Größen lässt sich darstellen z.B. Ua=f(t), Ia=f(t)

 Simulation beginnt bei t=0 und endet zu dem Zeitpunkt, der angegeben wird

- Kleine Schrittweite bei der Simulation kann erzwungen werden
- Die bei den Bauteilen festgelegten Anfangsbedingung können abgeschaltet werden

ent	×
sient Analysis	
Print Step: 20ns	
Final Time: 1000ns	_
No-Print Delay:	
Step Ceiling:	
)etailed Bias Pt.	
ikip initial transient solution	
er Analysis	
Enable Fourier	
Center Frequency:	
Number of harmonics:	_
Output Vars.:	
OK Cancel	
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Dr.-Ing. M. Junker

Jedes "Elen	nent" (Bauteil) bestehen aus folgenden Komponenten:
Name	erlaubt die eindeutige Identifizierung und liefert bereits eine Klassifizierung.
	z.B. V1 (Spannungsquelle), R5 (Widerstand),
Pins	Verbindung zur Außenwelt. (Jedem Pinwird eine Zah zugeordnet)
Attribute	Parameter, durch die das Verhalten des Bauteils bestimmt werden kann.
	z.B. der Widerstandswert eines Widerstandes

3.1 Quellen

+

ф

3.1.1 Gleichspannungsquelle VSRC

Attribut	Optional bei	Bedeutung
DC	AC/DC/Tran	Gleichspannungsanteil [V]
AC	DC/Tran	Wechselspannungsanteil [V]
TRAN	AC/DC/Tran	Phase [°] bei Wechselspannung

3.1.2 Gleichstromquelle ISRC

Attribut	Optional bei	Bedeutung
DC	AC/DC/Tran	Gleichspannungsanteil [V]
AC	DC/Tran	Wechselspannungsanteil [V]
TRAN	AC/DC/Tran	Phase [°] bei Wechselspannung

3

3.1.3 Sinusspannungsquelle VSIN

Attribut	Optional bei	Bedeutung
DC	AC/DC/Tran	Gleichspannungsanteil [V]
AC	DC/Tran	Wechselspannungsanteil [V]
VOFF	obligatorisch	Gleichspannungsanteil [V]
VAMPL	obligatorisch	Amplitude [V]
FREQ	obligatorisch	Frequenz [Hz]
TD=0	AC/DC/Tran	Verzögerungszeit [s]
DF=0	AC/DC/Tran	Dämpfungsfaktor
PHASE=0	AC/DC/Tran	Anfangsphase [Grad]

3.1.4 Sinusstromquelle ISIN Attribute und Schaltzeichen sind identisch (IOFF, IAMPL)

 \Box

3.1.5 Pulsspannungsquelle VPULSE

Attribut	Optional bei	Bedeutung
DC	AC/DC/Tran	Gleichspannungsanteil [V]
AC	DC/Tran	Wechselspannungsanteil [V]
V1	obligatorisch	Anfangsspannung [V]
V2	obligatorisch	Spitzenspannung [V]
TD	AC/DC/Tran	Verzögerungszeit [s]
TR	AC/DC/Tran	Anstiegszeit [s]
TF	AC/DC/Tran	Abfallzeit [s]
PW	AC/DC/Tran	Pulsbreite [s]
PER	AC/DC/Tran	Periodendauer [s]

3.1.6 Pulsstromquelle IPULSE

Attribute und Schaltzeichen sind identisch (I1, I2)

Symbol	Funktion	Steuergröße	Ausgar
E	Spannungsgesteuerte Spannungsquelle	U	U
G	Spannungsgesteuerte Stromquelle	U	
Н	Stromgesteuerte Spannungsquelle		U
F	Stromagetouarte Stromauelle		

- 3.3 aktive Bauelemente
 - In der Regel sind keine Parameter einstellbar

Bauteil	Bezeichnung	Verwendet für
Diode	D	Standard-, Schottky- und Zener-Diode
Bipolar- Transistor	Q	NPN-, PNP- und Darlington-
Mos-FET	M	P- und N-FET

 Har 	ndhabung von Bauteilen
	- platzieren, drehen, spiegeln (Ctrl+G, Ctrl+R, Ctrl+F)
	- Parameter eintragen (z.B. value, IC,)
	- Parameter sichtbar machen (change visible)
• Ver	bindungen zeichnen/benamen (Ctrl+W, Doppelklick)
• Ma	rker setzen
• Ana	alyse festlegen und konfigurieren
	- Im Menü: Analysis/Setup
• Aut	omatische Anzeige nach der Simulation einrichten
	- Im Menü: Analysis/Probe Setup

Die Visualisierung des Ergebnisses in Probe

Daten zur Anzeige auswählen

Add Traces (Ins)

Ströme, Spannungen und durch Funktionen verknüpfte Größen

z.B. I(R1), V(C3:2), V(Out), V(Out)*I(R2), SORT(V(L1:1))

- Skalieren der Achsen
- Hinzufügen von Achsen
- Curser aktivieren
- x-Achsen Variable ändern
- Darstellungsparameter speichern/aktivieren im Menü: Window\Display Control

