
Überblick

- Was ist Farbe?
 - > Farbwahrnehmung
 - > Farbmodelle
- Was ist Segmentierung?
 - ➤ Bereichs-basierte Segmentierung
 - ➤ Kanten-basierte Segmentierung
 - ➤ Beispiele: Hybride Verfahren

Was ist Farbe?

> (für menschliches Auge) sichtbares Licht

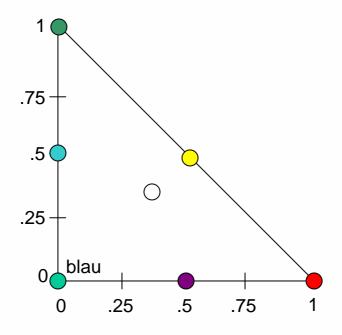
Frequenz (Hertz)

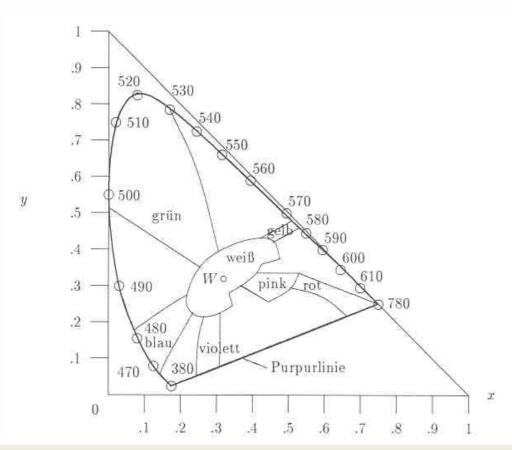
Was ist Farbe?

- Charakterisierung von Farbe bzw. Licht entweder über
 - > Frequenz v (Hz) oder
 - \triangleright Wellenlänge λ (Nanometer, 1nm = 10⁻⁹ m)
- Es gilt: $v \cdot \lambda = c$ mit c = Lichtgeschinwdigkeit(konstant bei 2,998·10⁸ m/s)
- Sichtbares Licht: Spektralfarben
 - ➤ Rot (4.3 10¹⁴Hz, ca. 780nm), Orange, Gelb, Grün, Blau, Indigo und Violett (7.5 10¹⁴Hz, ca. 380nm)

- Zapfen in der Retina
- Auge kann 350000 verschiedene Farben unterscheiden!
- ungleichmäßige Verteilung der Pigmente
 - ➤ Ca. 64% der Zapfen gelbe Pigmente
 - ➤ Ca. 32% der Zapfen grüne Pigmente
 - Ca. 2% der Zapfen blaue Pigmente
- ➤ Fovea Centralis: Grün-Bereich umgeben von Gelb-Bereich umgeben von Blau-Bereich

- Farbempfindung hängt ab von
 - Dominanter Frequenz (ausgesendet oder reflektiert von Objekt): Farbe (hue)
 - > Reinheit der Farbe: Sättigung (saturation)
 - ➤ Eng gekoppelt mit Anzahl verschiedener Wellenlängen je enger die Wellenlängen bei einander liegen, desto reiner die Farbe
 - ➤ Intensität des Lichts: Helligkeit (brightness)


- > Spektralfarben:
 - Ur- oder Hauptfarben fallen durch Eindeutigkeit auf
 - Andere Farben werden als Zwischentöne wahrgenommen (z.B. Orange zw. Gelb und Rot)
 - ➤ Drei Hauptfarben (P.O. Runge): Gelb, Rot, Blau (übernommen von Goethe in der Farbelehre)
 - > Vier Urfarben (E. Hering): Gelb, Rot, Grün, Blau
 - ➤ Je zwei Urfarben schließen sich gegenseitig aus: Gelb-Blau bzw. Rot-Grün

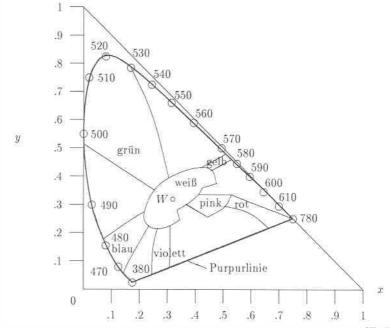

- Kombination von verschiedenfarbigen Lichtquellen wird gezielt zur Erzeugung von Farbpaletten (color gamut) eingesetzt
 - Komplementärfarben: Kombination erzeugt weißes Licht (blau/gelb oder rot/cyan)
 - Durch sorgfältige Auswahl von Farben, lässt sich bei Kombination eine sehr große Menge an unterschiedlichen Farben erzeugen
 - Wird angewendet bei Farbmodellen, die die Farben über dominante Wellenlängen beschreiben
 - Zwei/drei Farben, mit denen (fast) alle anderen Farben erzeugt werden können werden Primär oder auch Grundfarben genannt

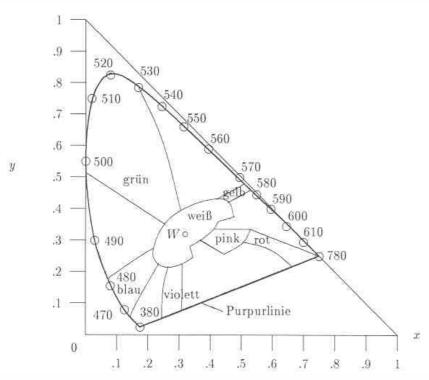
 \triangleright Grundfarben (R,G,B) wurden zu R+G+B=1 normiert

19.05.05

- **CIE-Standard** (Commission Internationale de l'Eclairage, 1931)
- Wellenlängen auf der Kurve abgetragen
- Grundfarben durch Energieverteilungskurve

charakterisiert [Fellner 92], S. 32

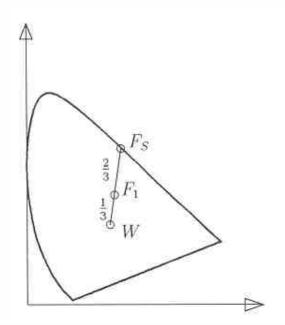


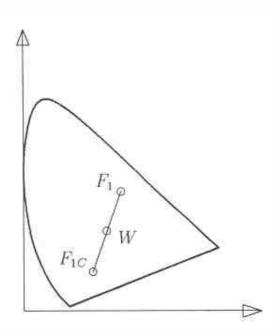

Seien *X,Y*, und *Z* die Anteile einer beliebigen Farbe an den CIE-Grundfarben, so berechnet sich Position (bzw. die Farbanteile der Farbe) zu:

$$x = \frac{X}{X + Y + Z},$$

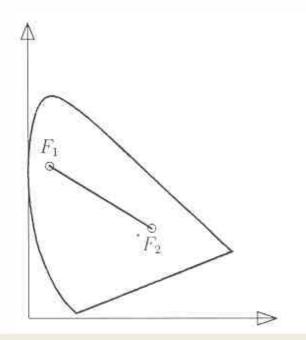
$$y = \frac{Y}{X + Y + Z},$$

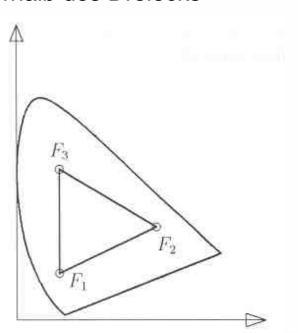
$$z = \frac{Z}{X + Y + Z}$$
mit $x + y + z = 1$





- Präzise Angabe von Farben durch Position
- Austausch von
 Farbinformationen zwischen
 Systemen mit
 verschiedenen Primärfarben
- Z.B.: RGB-Grundfarben x,y-Koordinaten
 - \triangleright Rot = (0.626,0.346)
 - \rightarrow Grün = (0.268,0.588)
 - ➤ Blau= (0.150,0.070)

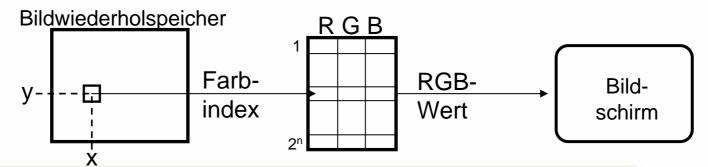

- Quantitative Angabe von
 - > Farbe und Sättigung sowie
 - > Komplementärfarbe

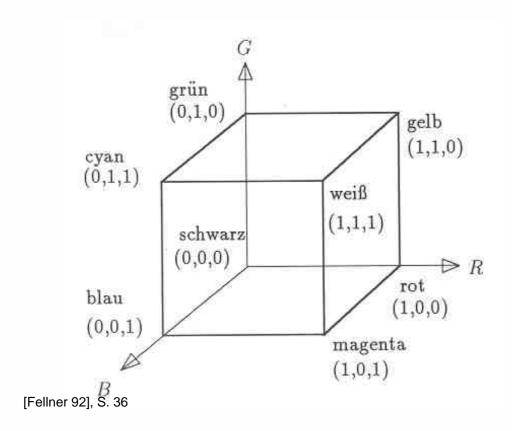


- > Farbpaletten
 - Zwei Punkte: Alle Farben auf der Linie können erzeugt werden
 - > Drei Punkte: Alle Farbe innerhalb des Dreiecks

Folgende Richtlinien bei der farblichen Gestaltung sind zu beachten

- Reines Blau sollte für Text, dünne Linien und kleine Objekte vermieden werden
- Aneinanderliegende Farben sollten sich nicht nur in ihrem Blau-Anteil unterscheiden
- > Ältere Benutzer benötigen ein höheres Helligkeitsniveau
- Rot und Grün sollte in Randbereichen vermieden werden
- Für farbenblinde Benutzer sollten sich unterschiedliche Farben in mehr als in einer Grundfarbe unterscheiden




Folgende Richtlinien bei der farblichen Gestaltung sind zu beachten

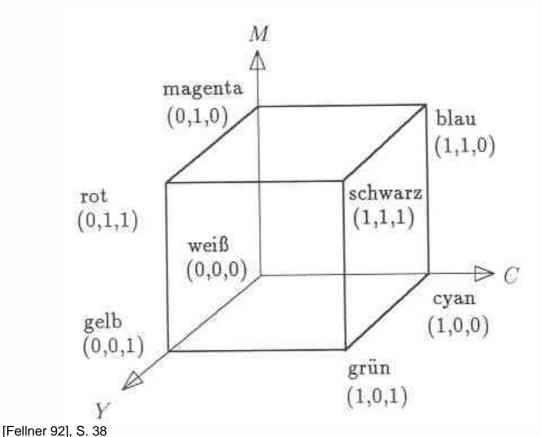
- ➤ Zu viele Farben, die unterschiedliches bedeuten, überfordern die menschliche Aufnahmefähigkeit (5+/-2 magische Zahl für auf einem Blick Erfassbares)
- Zusammengehörige Objekte sollte auf gleichem Hintergrund dargestellt werden
- Ähnlich Farben sollte ähnliche Bedeutung signalisieren
- Helligkeit und Sättigung eignen sich gut, um Aufmerksamkeit des Benutzers zu steuern
- ➤ Farbenanordnung entsprechen ihrer Spektral-Position (ROGGBIV rot, orange, gelb, grün, blau, indigo, violett)

- > RGB-Modell
 - > Am weitesten verbreitet
 - Phosphorschicht am CRT besteht ebenfalls aus RGB Punkten
 - ➤ Im Bildwiederholspeicher an Position (x,y) steht Index auf Farbtafel
 - > Farbtafel enthält Informationen über RGB-Anteil

- > RGB-Modell
 - Darstellung alsEinheitswürfel
 - Ursprung =
 Schwarz
 - Additive
 Farbmischung

- > YIQ-Modell
 - NTSC-Standard (National Television Standard Committee 1953/USA)
 - Y = chromatischer Anteil
 - IQ = achromatischer Anteil
 - Bei PAL-System: I=R-Y bzw. Q=B-Y

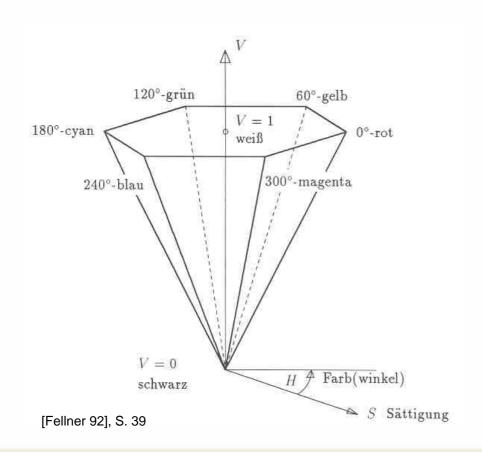
$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.522 & 0.311 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$


$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0.956 & 0.623 \\ 1 & -0.272 & -0.648 \\ 1 & -1.105 & 1.705 \end{bmatrix} \cdot \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

- > CMY-Modell
 - Cyan, Magenta, Yellow
 - ➤ Eignet sich für Farbsysteme mit permanenter Farbausgabe

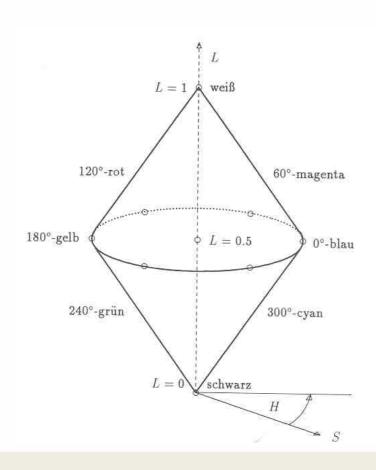
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} S \\ S \\ S \end{bmatrix} \cdot \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} W \\ W \\ W \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$


Vektor (S,S,S) im CMY-Modell bzw. (W,W,W) im RGB-Modell gleich (1,1,1)

- > CMY-Modell
 - Darstellung alsEinheitswürfel
 - ➤ Ursprung = Weiß
 - subtraktiveFarbmischung

- > HSV-Modell
 - > Hue, Saturation, Value
 - > intuitiv orientiert
 - Projektion des RGB-Würfels entlang der Diagonalen von Weiß nach Schwarz – Sechseck
 - > Sechseck ist Basis der HSV Pyramide
 - ➤ Farbe als Winkel im Sechseck (0° = Rot)
 - ➤ S repräsentiert Verhältnis Reinheit der Farbe zur maximalen Reinheit (S=1) (auf der vertikalen Achse liegen die Grauwerte mit S=0)
 - V bestimmt die Helligkeit: Farben an der Basis der Pyramide können die höchste Helligkeit besitzen


> HSV-Modell

- Darstellung als Pyramide
- ➤ Farbselektion
 durch Farbwinkel H
 (bei V=S=1)
 anschließend
 hinzumischen von
 - ➤ Weiß (Reduktion von S, V=konst.)
 - Schwarz (Reduktion von V, S=konst.)

- > HLS-Modell
 - Hue, Lightness, Saturation
 - > Entwickelt von der Fa. Tektronix
 - > intuitiv orientiert
 - > Farben liegen auf Farbenkreis (0° = Blau)
 - Farbe als Winkel im Kreis
 - ➤ Hochziehen der Pyramide -> Doppelkegel
 - ➤ S repräsentiert Verhältnis Reinheit der Farbe zur maximalen Reinheit (S=1) (auf der vertikalen Achse liegen die Grauwerte mit S=0)
 - ➤ L bestimmt die Helligkeit: maximale Sättigung bei L=0,5
 - ➤ L=0 := Schwarz, L=1 := Weiß

> HLS-Modell

- Darstellung als Doppelkegel
- Farbselektion durch Farbwinkel H (L=0.5, S=1)
- Um 120° gedreht zum HSV-Modell

Color Naming System

[Berk, Brownston & Kaufmann 1982]

- CNS-Modell
 - Color Naming System
 - Benutzerfreundliches Systems zur Farbauswahl
 - > Farbe kann in englischer Sprache beschrieben werden
 - Zugrundeliegende Parameter
 - > Farbe
 - > Reinheit
 - ➤ Helligkeit

werden umgangsprachlich beschrieben (einfache oder zusammengesetzte Ausdrücke)

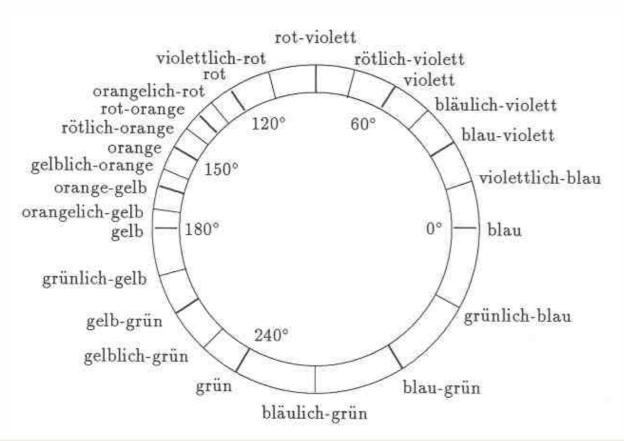
Color Naming System

[Berk, Brownston & Kaufmann 1982]

- > CNS-Modell
 - ➤ Werte für Helligkeit
 - Sehr dunkel (very dark)
 - ➤ Dunkel (dark)
 - ➤ Mittel (medium)
 - ➤ Hell (light)
 - ➤ Sehr hell (very light)
 - ➤ Werte für Sättigung
 - ➤ Gräulich (grayish)
 - ➤ Gemäßigt (moderate)

19.05.05

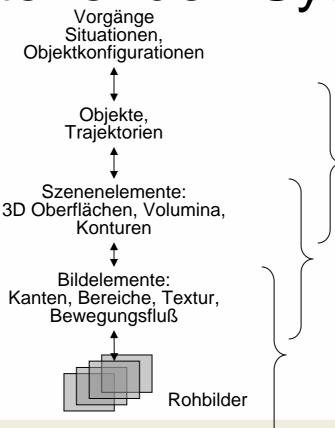
- ➤ Stark (strong)
- ➤ Lebendig (vivid)


- >Werte für Farbtöne
 - ➤Blau (blue)
 - ➤ Violett (purple)
 - ➤Rot (red)
 - ➤Orange (orange)
 - ➤Braun (brown)
 - ➤ Gelb (yellow)
 - ➤Grün (green)

- >Achromatische Farben
 - ➤ Schwarz (black)
 - Sehr dunkles Grau (very dark gray)
 - ➤ Dunkelgrau (dark gray)
 - ➤ Grau (gray)
 - ➤ Hellgrau (light gray)
 - Sehr helles Grau (very light gray)
 - ➤ Weiß (white)

Color Naming System

[Berk, Brownston & Kaufmann 1982]



➤ CNS – Modell

- Halbe Farbtöne := zusammenge setzte Farben
- Viertel
 Farben :=
 Suffix "lich"
- Dadurch Entstehung von Kunstwörtern, wie "orangelich" oder "violettlich"

Konzeptueller Rahmen eines Bildverstehenden Systems

Alltagswissen Situationsmodelle Vorgangsmodelle Objektmodelle Projektive Geometrie **Photometrie** Physik -Allgemeine Realwelteigenschaften

19.05.05

Nach [Neumann 95]

Höhere Bilddeutung

Objekterkennung

Niedere Bilddeutung, frühe visuelle Wahrnehmung

Segmentierung, primäre Bildanalyse

Segmentierung

- > Ziele
 - ➤ Trennung der zu untersuchenden Objekte von den "übrigen" Bildstrukturen
 - ➤ Zerlegung des Bildes in zu interessierende Strukturen (Objekte) und nicht zu interessierende Strukturen (Hintergrund)
 - > Trennung von sich berührenden Objekten
 - > Zerlegung in Teilobjekte

Segmentierung

- Bereichsbasierte Segmentierung
 - Punktbasierte Schwellwertverfahren: Klassifikation auf Ebene einzelner Pixel
 - Bereichswachstumsverfahren: Klassifikation unter Einbezug der Nachbarschaft
 - > Homogenitätskriterium (Intensitätswert, Farbe, Textur ...)
- Kantenbasierte Segmentierung
 - Diskontinuitätskriterium
- Hybride Verfahren (Kombination von kanten- und bereichsbasierten Verfahren)

Segmentierung

Unter der Segmentierung eines diskreten Bildsignals f(x,y) mit $\{0 \le x \le width - 1 \cap 0 \le y \le height - 1\}$ versteht man die Unterteilung von f in disjunkte, nichtleere Teilmengen $f_1, f_2, ..., f_p$ so, dass mit einem zu definierenden Einheitlichkeitskriterium E gilt:

a)
$$\bigcup_{i=1}^{P} f_i = f$$

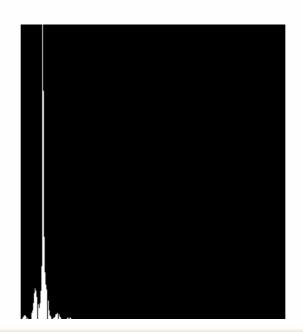
- b) f_i ist zusammenhängend $\forall i \text{ mit } i = 1,...,P$
- c) $\forall f_i$ ist das Einheitlichkeitskriterium $E(f_i)$ erfüllt
- d) Für jede Vereinigungsmengezweierbenachbarer f_i, f_j ist $E(f_i \cup f_j)$ nichterfüllt

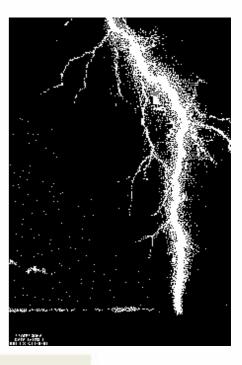
Bereichsbasierte Segmentierung

- Einfache Schwellwertverfahren
 - > Helle Objekte auf dunklem Hintergrund oder umgekehrt
 - \triangleright Zusammenhang zwischen Eingangssignal (Bild) f(x,y) und Ausgangssignal (segmentiertes Bild) g(x,y):

$$g(x, y) = \begin{cases} I_1 & \text{für } 0 \le f(x, y) < S \\ I_2 & \text{für } S \le f(x, y) \le f_{\text{max}} \end{cases}$$

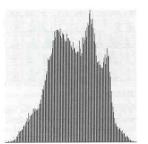
mit I_1 und I_2 voneinander unterschiedliche Werte und S als einzustellende Schwelle (i.d.R. aus Histogramm)

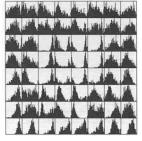

 $\succ f_{max}$ maximale Wert von f

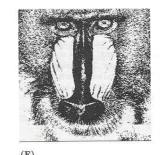

Bereichsbasierte Segmentierung

Einfaches punktorientiertes Schwellwertverfahren

- Ideal: bimodales Histogramm
- Schwellwert im "Tal" zwischen den Maxima"






(C)

(B)

(D)

[Abmayr 94], S. 230

19.05.05

Bereichsbasierte Segmentierung

Einfaches *lokales* punktorientiertes Schwellwertverfahren

- Ideal: bimodale Histogramme
- Schwellwerte zwischen den Maxima

Bereichsbasierte Segmentierung

- > Einfache Schwellwertverfahren
 - ➤ Erweiterung für P Objekte im Bild (Hintergrund auch als Objekt)

$$g(x, y) = I_i \text{ für } S_{i-1} \le f(x, y) < S_i$$

mit $i = 1, 2, ..., P$, $S_0 = 0 \text{ und } S_P = f_{\text{max}} + 1$

Bereichsbasierte Segmentierung

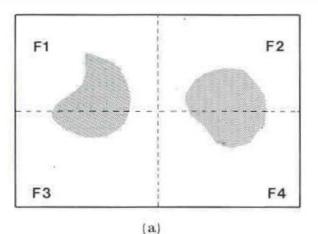
- > Berechnung einer optimalen Schwelle
 - Verteilung der Grauwerte als Wahrscheinlichkeitsdichtefunkion
 - $\triangleright p_A(z)$ für Grauwert der Objekte
 - $\triangleright p_{B}(z)$ für Grauwert des Hintergrundes
 - \triangleright Als Näherung (der Wahl) Gaußverteilung $p_i(z)$:

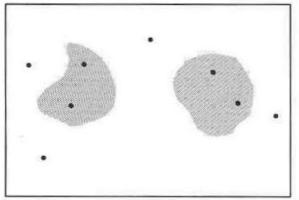
$$p_i(z) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(\frac{(z-\mu_i)^2}{2\sigma_i^2}\right) \text{ mit } i = A, B$$

 μ_i = Mittelwerte und σ_i = Standardabweichungen

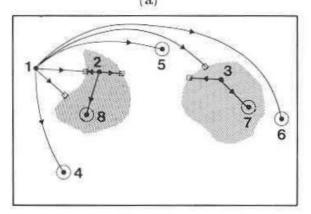
- Nachteile der Schwellwertverfahren
 - A priori Wissen über die Anzahl der Objekte im Bild erforderlich
 - Voraussetzung: Objekte werden durch unterschiedliche Intensitäten repräsentiert, deren Bereiche sich nur geringfügig überlappen
 - ➤ Nur dann Berechnung einer geeigneten Schwelle möglich ☺
 - > Oft sind Bereiche nicht zusammenhängend
- Alternative: Bereichswachstumsverfahren (region growing)

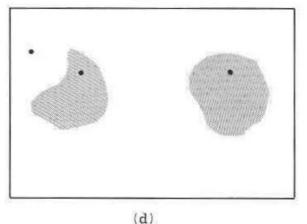
- Bereichswachstumsverfahren mit Startpunkten
 - \triangleright Ausgangslage: ein Startpunkt pro Bereich f_{ε} (Idealfall)
 - > Iteratives Verfahren
 - > Bereichswachstum: Zuordnung benachbarter Bildpunkte mit gleichen oder ähnlichen Eigenschaften (ggf. mit Mittelwertbildung)
 - \triangleright Abbruch: alle Bildpunkt sind einem Bereich f_{ε} zugeordnet


19.05.05



- Bereichswachstumsverfahren (prinzipielle Vorgehensweise)
 - Für jedes GW-Plateau wird ein Startpunkt bestimmt
 - ➢ Bei mehreren Startpunkten zerfällt das Plateau in eine entsprechende Anzahl Unterplateaus (-> Fehlerbehebung durch nachfolgende Bereichsverschmelzung)
 - Wurde kein Startpunkt gefunden, dann wird das Plateau einem benachbarten Plateau zugewiesen


- Bereichswachstumsverfahren: Auffinden der Startpunkte
 - Startpunkte sollen im Inneren der Regionen und nicht auf den Kanten liegen
 - ➤ Daher werden zunächst alle Punkte, deren Intensitätsgradient eine Schwelle △S nicht überschreitet als potentielle Startpunkte markiert
 - ➤ Dies sind wesentlich mehr Startpunkte als Regionen!


(b)

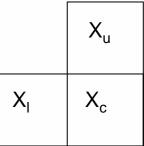
Beseitigung von überflüssigen Startpunkten

(c)

19.05.05

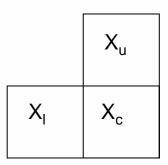
[Wahl 84], S. 130

- \triangleright Berechnung der lokalen Schwellen S_i
 - ➢ Bild wird in i Teilfenster (F_i) eingeteilt
 - Lokale GW-Schwellen S_i durch Differenz von Intensitätsmaximum I_{oi} -minimum I_{ui}


$$S_i = (I_{oi} - I_{ui})/K$$

➤ K ist eine empirisch ermittelte Konstante, wobei mit dem Wert 3 i.d.R. gute Ergebnisse erzielt werden

Blob-Coloring ([Ballard & Brown 82])


- ➤ Voraussetzung: Schwelle S für die Ähnlichkeit zweier Grauwerte
- ➤ Wandere mit der abgebildeten L-förmigen Maske von links oben nach rechts unten über das Bild
- ➤ Dabei ist X_c der zu segmentierende Punkt
- $> X_u$ und X_l sind bereits segmentiert

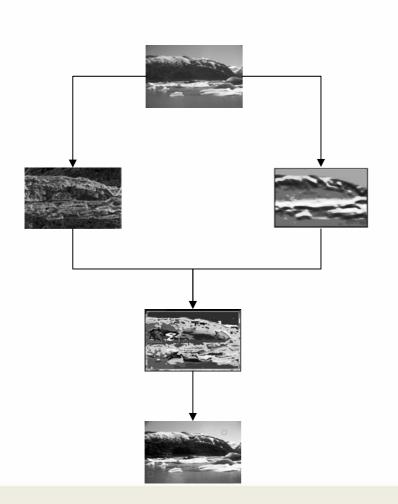
Blob-Coloring ([Ballard & Brown 82])

- ightharpoonup Algorithmus: Bestimme an jedem Punkt X_c die Grauwertdifferenzen $|X_c X_l|$ bzw. $|X_c X_u|$ gemäß der L-förmigen Maske.
 - ightharpoonupist $|X_c X_u| > S$ und $|X_c X_u| > S$ dann startet bei X_c ein neuer Bereich.
 - ≽ist $|X_c X_l| > S$ und $|X_c X_u| \le S$ dann wird X_c dem Bereich von X_u zugesprochen.
 - ightharpoonupist $|X_c X_u| ≤ S$ und $|X_c X_u| > S$ dann wird X_c dem Bereich von X_l zugesprochen.
 - Fist $|X_c X_l| \le S$ und $|X_c X_u| \le S$ so wird X_c dem Bereich von X_l zugesprochen. Die Bereiche von X_u und X_l sind äquivalent und werden verschmolzen.

Kantenbasierte Segmentierung

- > 1. Schritt: Kantenpunktdetektion
 - Gradientenoperatoren
 - ➤ 1te und 2te Ableitung (Sobel, Prewitt, Laplace, LoG,...)
- 2. Schritt: Konturverfolgung/-verkettung/rekonstruktion/-beschreibung/-approximation
 - Konturverkettung mittels Hough-Transformation
 - Konturbeschreibung mittels Kettencode
 - Konturapproximation

Kantenbasierte Segmentierung

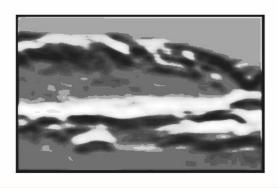

- Kontur & Kantenpunkt
 - > Kantenpunkt: einzelnes, punktgroßes Kantenstück
 - ➤ Mögliche Kontur besteht nur aus "Lücken", da Kantenpunkte nicht logisch zusammengehörig
 - > Zusammenhängende Kantenstücke (Kantenpunkte)
 - ➤ Lücken können auftreten, einzelne Kantenpunkte einzelner Kantenstücke gehören logisch zusammen
 - Geschlossene Kontur
 - ➤ Keine Lücken, keine einzelne Kantenstücke, ganze Objektkontur gehört logisch zusammen

Segmentierungsbeispiele

- >Textur-basierte Segmentierung
- > Farb-basierte Segmentierung
- Kanten-basierte Segmentierung

Segmentierung (textur-basiert)

- AllgemeingültigesSegmentierungsverfahren
- Kombination von Kanten und Regionen
- Regionen durch Laws-Filter
- Kanten durch Yu et al.Richtungsenergie
- angepaßtes Blob-Coloring
- Anwendung: Entnahme von einheitlichen Texturproben für die Klassifikation

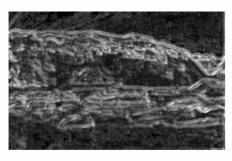

Segmentierung: Laws ([Laws 80])

$$1 \quad 2 \quad 1 \qquad -1 \quad 0 \quad 1 \qquad 1 \quad -2 \quad 1$$
 $m_1 = 2 \quad 4 \quad 2 \qquad m_2 = -2 \quad 0 \quad 2 \quad m_9 = -2 \quad 4 \quad -2$
 $1 \quad 2 \quad 1 \qquad -1 \quad 0 \quad 1 \qquad 1 \quad -2 \quad 1$

$$Z_n(x, y) = I(x, y) \otimes m_n$$

- Laws 3x3-Filtermasken (auch 5x5 Masken)
- Zwischenergebnisbild entsteht durch Faltung des Eingabebildes mit einer Filtermaske

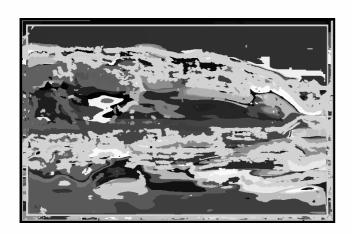
$$E(x, y) = \sqrt{(Z_1(x, y))^2 + (Z_2(x, y))^2 + \dots + (Z_9(x, y))^2}$$


Energiebild durch Verknüpfung der Zwischenergebnisbilder

Segmentierung: Yu et al. ([Yu et al. 91])

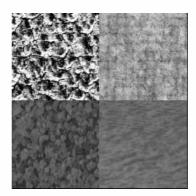
$$e(i,j) = \sum_{l=1}^{h} \frac{\left\|F(i,j+l+k) - F(i,j-l)\right\|}{\left\|F(i,j+l+k)\right\| + \left\|F(i,j-l)\right\|}$$
 > 1D-Energierichtungsmaß für acht Richtungen

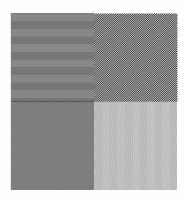
 $k = Gr\ddot{o}$ ße des Fensters, und

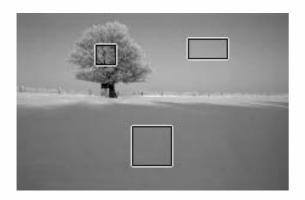

h = Glättungsfaktor

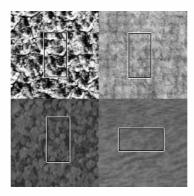
- ➤ acht Merkmalsbilder jeweils mit Median geglättet
- \triangleright Ergebnis ist F(i,j)
- > Texturkanten *e(i,j)*
- Binarisierung
- Morphologische Operation Öffnen

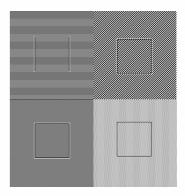
Segmentierung: Regionenbestimmung




- ➤ Idee von [Pavlidis & Liow 1990]
- ➤ Bereichswachstumverfahren blob-coloring [Ballard & Brown, 1982]
- angepaßt auf Grauwerte
- Homogenitätskriterium ist der Energiewert nach Laws
- Abbruchkriterium für neue Region, wenn
 - starke Energieänderung
 - Texturkante
 - Texturprobenentnahme


19.05.05


Segmentierung: Anwendungsbeispiele



Segmentierung (farb-basiert)

- AllgemeingültigesSegmentierungsverfahren
- Transformation in den HLS-Farbenraum
- angepasstes Blob-Coloring bzgl.
 HLS-Farben
- ➤ Abbildung auf CNS
- Ausgabe wieder im RGB-Format

Segmentierung (kanten-basiert)

Farbsegmentierung

- Untersegmentierung
 - zu wenige Regionen
 - => Informations verlust
- Übersegmentierung
 - zu viele Regionen
 - => zu viele Informationen

untersegmentiert: 10 Regionen

übersegmentiert: 14000 Regionen

Zusammenfassung

- Farbmodelle
 - additiv, subtraktiv, intuitiv ©
 - -CNS
- Segmentierung
 - Diskontinuitätskriterium, Homogenitätskriterium
 - Farbe, Textur und Kante